Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Acta Pharmaceutica Sinica ; (12): 2727-2733, 2023.
Article in Chinese | WPRIM | ID: wpr-999031

ABSTRACT

italic>α-Conotoxin ArIB[V11L,V16D] is currently the most optimal selective inhibitor of α7 nicotinic acetylcholine receptor (nAChR) known. In order to explore chemical modification methods and enrich its application in targeting nAChR, this study utilized the linker to covalently connect camptothecin and 7-amino-4-methylcoumarin to the [2,4] disulfide bond of ArIB[V11L,V16D]. Therefore, two peptide-drug conjugates (PDCs), ArIB[V11L,V16D]-5 and ArIB[V11L,V16D]-6, and one fluorescent-labeled peptide, ArIB[V11L,V16D]-7 were constructed. Cytotoxicity evaluation showed that the IC50 values against non-small cell lung cancer cell line A549 of the two PDCs were respectively 1.3 and 4.1 times of camptothecin, indicating slight reduction in activity at the cellular level which was related to the linker structure. Fluorescence spectrum scanning revealed that the excitation and emission wavelength of the fluorescent-labeled peptide were 340 nm and 403 nm respectively, and the fluorescence features of 7-amino-4-methylcoumarin as a marker were retained without fluorescence quenching. This modification strategy laid a solid foundation for the further application of α-conotoxin ArIB[V11L,V16D] in PDCs and fluorescent probes.

2.
Acta Pharmaceutica Sinica ; (12): 724-730, 2022.
Article in Chinese | WPRIM | ID: wpr-922899

ABSTRACT

The α-conotoxins are peptide toxins that are identified from the venom of marine cone snails and they hold outstanding potency on various subtypes of nicotinic acetylcholine receptors (nAChRs). nAChRs have an important role in regulating transmitter release, cell excitability, and neuronal integration, so nAChR dysfunctions have been involved in a variety of severe pathologies. Four types of α-3/5 conotoxins MI, MIA, MIB and MIC have been found from Conus magus. Among them, the activity and selectivity of MIA and MIB have not been well studied. In this study, four α-3/5 conotoxins MI, MIA, MIB and MIC were synthesized by solid peptide synthesis method, and the bioactivities of them were screened by double electrode voltage clamp electrophysiology. The results showed that MIA and MIB selectively inhibited muscle type acetylcholine receptors with IC50 values of 14.45 and 72.78 nmol·L-1, respectively, which are slightly weaker than MI and MIC. Molecular docking results have shown MIA and MIB interact with muscle-type nAChRs with similar mechanism. The reasons for activity differences may relate to the size of the N-terminal amino acids. Together, the conotoxins MIA and MIB may have the potential to develop as a tool for detect the function of muscle type nAChRs, as well as the diagnosis or treat of related diseases.

3.
Acta Pharmaceutica Sinica ; (12): 2252-2259, 2021.
Article in Chinese | WPRIM | ID: wpr-887053

ABSTRACT

italic>α7 nicotinic acetylcholine receptor (nAChR) is widely distributed in the central and peripheral nervous systems, and is closely related to a variety of neurological diseases and inflammation response. α-Conotoxin [A10L]PnIA, as an antagonist targeting α7 nAChR, plays an important role in studying the physiological and pathological processes involved in α7 nAChR. [A10L]PnIA was labeled with fluorescein 5-carboxytetramethylrhodamine, and the active peptide ([A10L]PnIA-F) was obtained by a two-step oxidative folding procedure in vitro. The Xenopus oocyte expression system and the two-electrode voltage clamp technique were used to identify the potency of [A10L]PnIA-F fluorescent peptide, and its cytotoxicity was detected by mouse macrophages and CCK8 method. The molecular weight of [A10L]PnIA-F fluorescent peptide was identified by mass spectrometry as 2 077.28 Da, which was consistent with the theoretical value. Electrophysiological determination of its half-maximal inhibitory concentration (IC50) for α7 nAChR is 17.32 nmol·L-1, which is consistent with [A10L]PnIA (IC50, 13.84 nmol·L-1). The cytotoxicity test results showed that within the concentration range of 5 nmol·L-1 to 10 μmol·L-1, there was no significant inhibition on the growth of mouse macrophages. The results showed that the α-conotoxin fluorescent probe [A10L]PnIA could provide pharmacological tools for the research of α7 nAChR-related neurophysiological and pathological mechanisms.

4.
Acta Pharmaceutica Sinica ; (12): 2567-2572, 2021.
Article in Chinese | WPRIM | ID: wpr-886963

ABSTRACT

The cyanuric chloride linkers have been used for cyclizing polypeptide, but not used for α-conotoxin, the peptides with rich disulfide bonds and more amino acid residues. In this study, cyclic peptides c[A10L]PnIA-1-4 were synthesized efficiently by lysine assisted cyanuric chloride linkers with 28.92%-52.00% yields. The activity evaluation showed that the IC50 values of c[A10L]PnIA-1 against α7 and α3β2 nAChR subtypes were 5 and 7 times higher than [A10L]PnIA respectively, and the subtype selectivity was maintained. The results of circular dichroism show that this cyclization method had no significant effect on its secondary structure. Compared with the commonly used head-to-tail cyclization in conotoxin cyclization, this method has the advantages of rapid reaction and high yield, which is expected to be further applied to the cyclization study of various α-conotoxins.

5.
J. venom. anim. toxins incl. trop. dis ; 27: e20200164, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1279407

ABSTRACT

Background Conotoxins have become a research hotspot in the neuropharmacology field for their high activity and specificity in targeting ion channels and neurotransmitter receptors. There have been reports of a conotoxin acting on two ion channels, but rare reports of a conotoxin acting on three ion channels. Methods Vr3a, a proline-rich M-superfamily conotoxin from a worm-hunting Conus varius, was obtained by solid-phase synthesis and identified by mass spectrometry. The effects of synthesized Vr3a on sodium, potassium and calcium currents were tested on rat DRG cells by patch clamp experiments. The further effects of Vr3a on human Cav1.2 and Cav2.2 currents were tested on HEK293 cells. Results About 10 μM Vr3a has no effects on the peak sodium currents, but can induce a ~10 mV shift in a polarizing direction in the current-voltage relationship. In addition, 10 μM Vr3a can increase 19.61 ± 5.12% of the peak potassium currents and do not induce a shift in the current-voltage relationship. An amount of 10 μM Vr3a can inhibit 31.26% ± 4.53% of the peak calcium currents and do not induce a shift in the current-voltage relationship. The IC50 value of Vr3a on calcium channel currents in rat DRG neurons is 19.28 ± 4.32 μM. Moreover, 10 μM Vr3a can inhibit 15.32% ± 5.41% of the human Cav1.2 currents and 12.86% ± 4.93% of the human Cav2.2 currents. Conclusions Vr3a can simultaneously affect sodium, potassium and calcium currents. This novel triple-target conotoxin Vr3a expands understanding of conotoxin functions.(AU)


Subject(s)
Proline/analysis , Conotoxins/analysis , Potassium , Sodium , Calcium
6.
J. venom. anim. toxins incl. trop. dis ; 27: e20210023, 2021. tab, graf, ilus, mapas
Article in English | LILACS, VETINDEX | ID: biblio-1346437

ABSTRACT

Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins are produced by venomous marine cone snails. Currently, these small and stable molecules are of great importance as research tools and platforms for discovering new drugs and therapeutics. Therefore, the characterization of Conus venom is of great significance, especially for poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom profile and emphasize the functional composition of conopeptides in Conus taeniatus, a neglected worm-hunting cone snail. Results: The proteomic analysis revealed that 84.0% of the venom proteins were between 500 and 4,000 Da, and 16.0% were > 4,000 Da. In C. taeniatus venom, 234 peptide fragments were identified and classified as conotoxin precursors or non-conotoxin proteins. In this process, 153 conotoxin precursors were identified and matched to 23 conotoxin precursors and hormone superfamilies. Notably, the four conotoxin superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most abundant peptides in C. taeniatus venom, accounting for 63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin proteins were identified in the venom of C. taeniatus. Moreover, several possibly biologically active peptide matches were identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C. taeniatus-derived proteome is comparable to that of other Conus species and contains an effective mix of toxins, ionic channel inhibitors and antimicrobials. Additionally, it provides a guidepost for identifying novel conopeptides from the venom of C. taeniatus and discovering conopeptides of potential pharmaceutical importance.(AU)


Subject(s)
Animals , Proteome , Conotoxins , Conus Snail , Mollusk Venoms , Neurotoxins , Biological Products
7.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484781

ABSTRACT

Abstract Background: Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins are produced by venomous marine cone snails. Currently, these small and stable molecules are of great importance as research tools and platforms for discovering new drugs and therapeutics. Therefore, the characterization of Conus venom is of great significance, especially for poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom profile and emphasize the functional composition of conopeptides in Conus taeniatus, a neglected worm-hunting cone snail. Results: The proteomic analysis revealed that 84.0% of the venom proteins were between 500 and 4,000 Da, and 16.0% were > 4,000 Da. In C. taeniatus venom, 234 peptide fragments were identified and classified as conotoxin precursors or non-conotoxin proteins. In this process, 153 conotoxin precursors were identified and matched to 23 conotoxin precursors and hormone superfamilies. Notably, the four conotoxin superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most abundant peptides in C. taeniatus venom, accounting for 63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin proteins were identified in the venom of C. taeniatus. Moreover, several possibly biologically active peptide matches were identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C. taeniatus-derived proteome is comparable to that of other Conus species and contains an effective mix of toxins, ionic channel inhibitors and antimicrobials. Additionally, it provides a guidepost for identifying novel conopeptides from the venom of C. taeniatus and discovering conopeptides of potential pharmaceutical importance.

8.
J. venom. anim. toxins incl. trop. dis ; 26: e20190095, 2020. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1135162

ABSTRACT

Conopeptides are neuropharmacological peptides derived from the venomous salivary glands of cone snails. Among 29 superfamilies based on conserved signal sequences, T-superfamily conotoxins, which belong to the smallest group, include four different frameworks that contain four cysteines denominated I, V, X and XVI. In this work, the primary structure and the cysteine connectivity of novel conotoxin of Conus bandanus were determined by tandem mass spectrometry using collision-induced dissociation. Methods: The venom glands of C. bandanus snails were dissected, pooled, and extracted with 0.1% trifluoroacetic acid in three steps and lyophilized. The venom was fractionated and purified in an HPLC system with an analytical reversed-phase C18 column. The primary peptide structure was analyzed by MALDI TOF MS/MS using collision-induced dissociation and confirmed by Edman's degradation. The peptide's cysteine connectivity was determined by rapid partial reduction-alkylation technique. Results: The novel conotoxin, NGC1C2(I/L)VREC3C4, was firstly derived from de novo sequencing by MS/MS. The presence of isoleucine residues in this conotoxin was confirmed by the Edman degradation method. The conotoxin, denominated Bn5a, belongs to the T1-subfamily of conotoxins. However, the disulfide bonds (C1-C4/C2-C3) of Bn5a were not the same as found in other T1-subfamily conopeptides but shared common connectivities with T2-subfamily conotoxins. The T1-conotoxin of C. bandanus proved the complexity of the disulfide bond pattern of conopeptides. The homological analysis revealed that the novel conotoxin could serve as a valuable probe compound for the human-nervous-system norepinephrine transporter. Conclusion: We identified the first T1-conotoxin, denominated Bn5a, isolated from C. bandanus venom. However, Bn5a conotoxin exhibited unique C1-C4/C2-C3 disulfide connectivity, unlike other T1-conotoxins (C1-C3/C2-C4). The structural and homological analyses herein have evidenced novel conotoxin Bn5a that may require further investigation.(AU)


Subject(s)
Animals , Peptides , Conotoxins , Disulfides , Conus Snail , Salivary Glands
9.
Asian Pacific Journal of Tropical Biomedicine ; (12): 343-352, 2020.
Article in Chinese | WPRIM | ID: wpr-823949

ABSTRACT

Objective: To determine the new M-superfamily conotoxins from molluscivorous snail Conus bandanus in Vietnam. Methods: Conus bandanus venom was fractionated and purified on HPLC system with an analytical reversed-phase C18 column in order to screen small conotoxins. The primary structure of peptide was analyzed by matrix-assisted laser desorption/ionization time of flight tandem mass spectrometry using collision-induced dissociation and confirmed by Edman's degradation method. Results: Five new conotoxins were biochemically characterized from the crude venom of the mollusk-hunting cone snail Conus bandanus, which were collected at Ke Ga reef of the Nha Trang Bay (Vietnam). Each conotoxin had 15 or 16 amino acid residues and shared the same characteristic cysteine framework V as -CC-C-C-CC-. They were termed as Bn3b, Bn3c, Bn3d, Bn3e and Bn3f following the conotoxins nomenclature. Conclusions: The conotoxins Bn3b, Bn3e, and Bn3f are categorized in the mini-M conotoxins of the M1 branch, while conotoxins Bn3c and Bn3d are categorized in the mini-M conotoxins of the M2 branch. The homological analysis reveals that these conotoxins could serve as promising probe compounds for voltage-gated sodium channels.

10.
Asian Pacific Journal of Tropical Biomedicine ; (12): 343-352, 2020.
Article in Chinese | WPRIM | ID: wpr-950283

ABSTRACT

Objective: To determine the new M-superfamily conotoxins from molluscivorous snail Conus bandanus in Vietnam. Methods: Conus bandanus venom was fractionated and purified on HPLC system with an analytical reversed-phase C18 column in order to screen small conotoxins. The primary structure of peptide was analyzed by matrix-assisted laser desorption/ionization time of flight tandem mass spectrometry using collision-induced dissociation and confirmed by Edman's degradation method. Results: Five new conotoxins were biochemically characterized from the crude venom of the mollusk-hunting cone snail Conus bandanus, which were collected at Ke Ga reef of the Nha Trang Bay (Vietnam). Each conotoxin had 15 or 16 amino acid residues and shared the same characteristic cysteine framework V as-CC-C-C-CC-. They were termed as Bn3b, Bn3c, Bn3d, Bn3e and Bn3f following the conotoxins nomenclature. Conclusions: The conotoxins Bn3b, Bn3e, and Bn3f are categorized in the mini-M conotoxins of the M1 branch, while conotoxins Bn3c and Bn3d are categorized in the mini-M conotoxins of the M2 branch. The homological analysis reveals that these conotoxins could serve as promising probe compounds for voltage-gated sodium channels.

11.
Chinese Pharmaceutical Journal ; (24): 574-580, 2017.
Article in Chinese | WPRIM | ID: wpr-858761

ABSTRACT

OBJECTIVE: To investigate antagonistic activities of three isomers of α-conotoxin TxIB on rat and human α6 /α3β2β3 nicotinic acetylcholine receptors (nAChRs). METHODS: Three disulfide bond isomers were synthesized using Fmoc chemistry, which were identified by ultra performance liquid chromatography (UPLC)and confirmed by MALDI-TOF mass spectrometry. Rat and human α6/α3β2β3 nAChRs were expressed in oocytes of Xenopus laevis, which were used to test the antagonistic abilities of the 3 isomers. RESULTS: The three isomers of α-conotoxin TxIB were synthesized successfully. The retention time of each isomer of α-conotoxin TxIB was different each other significantly. The observed molecular masses of three isomers were the same, which were consistent with their theoretical molecular mass. Their hydrophilicity orders were globular > ribbon > bead. Both rat and human α6/α3β2β3 nAChRs were expressed in oocytes well. Inhibition of three isomers of α-conotoxin TxIB on rat and human α6 /α3β2β3 nAChRs were evaluated respectively. Among the three isomers of TxIB, the activity of the globular isomer was the most potent one, which had almost same activity at rat and human α6/α3β2β3 nAChRs with corresponding IC50 of 28.2 and 32.0 nmol·L-1 respectively. However, the other two isomers, ribbon and bead isomers displayed little antagonistic effect on both rat and human α6/α3β2β3 nAChRs only with an IC50 of > 10 μmol·L-1. CONCLUSION: The synthesized globular isomer of α-conotoxin TxIB in this work has a high selectivity and potent antagonistic activity on rat and human α6/α3β2β3 nAChRs, which would be helpful for its new drug development.

12.
Chinese Pharmaceutical Journal ; (24): 802-808, 2016.
Article in Chinese | WPRIM | ID: wpr-859107

ABSTRACT

OBJECTIVE: To interrogate differential sensitivity of α-conotoxin TxID on stoichiometry of α3β4 nicotinic acetylcholine receptors(nAChRs). METHODS: Oocytes of Xenopus laevis were used to express rat α3β4 nAChRs with different stoichiometries by altering α3:β4 RNA injection ratios of 1:1, 1:10 or 10:1. Sensitivity of α-conotoxin TxID on these different stoichiometry receptors were evaluated and compared. RESULTS: The three stoichiometry receptors of α3β4 nAChRs were expressed in oocytes successfully. α-Conotoxin TxID showed differential sensitivity on α3β4 nAChR stoichiometries. Inhibition of 1:10 injection ratio by TxID was similar with regular 1:1 α3β4 nAChRs within 2-fold difference. While potency of 10:1 injection ratio by TxID decreased 5-fold significantly comparing with 1:1 α3β4 nAChRs. CONCLUSION: α-Conotoxin TxID exhibits distinct sensitivity on different stoichiometry of α3β4 nAChRs, which could reflecting different stoichiometries of α and β subunits. The RESULTS would be helpful for elucidation of structure and physiology function of α3β4 nAChRs.

13.
Chinese Pharmaceutical Journal ; (24): 1941-1946, 2016.
Article in Chinese | WPRIM | ID: wpr-858908

ABSTRACT

OBJECTIVE: α-Conotoxin LtIA (α-CTX LtIA, LtIA) is a specific inhibitor of α3β2 nicotinic acetylcholine receptors (nAChRs) from Conus litteratus, a marine snail native to Hainan. The aim of this study was to evaluate the analgesic activity of α-CTX LtIA. METHODS: The analgesic effect of α-CTX LtIA on pain models was evaluated using mice hot-plate and tail-flick models by intracerebroventricular (icv) injection. RESULTS: In tail-flick test, the maximum analgesia percentage (PMAP) was 37.74% at 15 min after LtIA administration by icv injection with dose of 0.2 nmol per mouse. While in hot-plate test, PMAP was 48. 81% at 60 min after LtIA administration by icv injection with same dose of 0.2 nmol per mouse. α-CTX LtIA showed good analgesic activity in two pain models. CONCLUSION: α-CTX LtIA exhibits good analgesic activity by specific interaction with α3β2 nAChRs subtype. These results have great significance for the research and development of LtIA painkiller in the future.

14.
Journal of China Pharmaceutical University ; (6): 483-490, 2016.
Article in Chinese | WPRIM | ID: wpr-811850

ABSTRACT

@#To investigate activities of three isomers of α-conotoxin TxID on human α3β4 and α6/α3β4 nicotinic acetylcholine receptors(nAChRs). The three isomers of α-conotoxin TxID were synthesized using solid phase Fmoc chemistry and fully folded by two-step oxidations. Human α3β4 and α6/α3β4 nAChRs were expressed in oocytes of Xenopus laevis, which were used for bioassay of the three isomers, including inhibition and washout reversibility. There were obvious differences between the inhibition potency of each isomers at human α3β4 and α6/α3β4 nAChRs. The blocking was reversible and washout rapidly. The most potent isomer is the globular form with an IC50 of 9. 3 nmol/L on human α3β4 and α6/α3β4 nAChRs respectively. The 2nd potent isomer was the ribbon form with much less potency, which had an IC50 of > 5 μmol/L. The bead isomer had little or no block on human α3β4 and α6/α3β4 nAChRs with an IC50 of > 10 μmol/L. The three isomers of α-conotoxin TxID were synthesized successfully with two pairs of desired disulfide bond. Inhibition activities of the 3 isomers on human α3β4 and α6/α3β4 nAChRs were obtained respectively, which would be basis for new marine drug development of α-conotoxin TxID.

15.
Asian Pacific Journal of Tropical Medicine ; (12): 337-351, 2015.
Article in English | WPRIM | ID: wpr-820350

ABSTRACT

The evolutionarily unique and ecologically diverse family Conidae presents fundamental opportunities for marine pharmacology research and drug discovery. The focus of this investigation is to summarize the worldwide distribution of Conus and their species diversity with special reference to the Indian coast. In addition, this study will contribute to understanding the structural properties of conotoxin and therapeutic application of Conus venom peptides. Cone snails can inject a mix of various conotoxins and these venoms are their major weapon for prey capture, and may also have other biological purposes, and some of these conotoxins fatal to humans. Conus venoms contain a remarkable diversity of pharmacologically active small peptides; their targets are an iron channel and receptors in the neuromuscular system. Interspecific divergence is pronounced in venom peptide genes, which is generally attributed to their species specific biotic interactions. There is a notable interspecific divergence observed in venom peptide genes, which can be justified as of biotic interactions that stipulate species peculiar habitat and ecology of cone snails. There are several conopeptides used in clinical trials and one peptide (Ziconotide) has received FDA approval for treatment of pain. This perspective provides a comprehensive overview of the distribution of cone shells and focus on the molecular approach in documenting their taxonomy and diversity with special reference to geographic distribution of Indian cone snails, structure and properties of conopeptide and their pharmacological targets and future directions.

16.
Asian Pacific Journal of Tropical Biomedicine ; (12): 337-351, 2015.
Article in Chinese | WPRIM | ID: wpr-672832

ABSTRACT

The evolutionarily unique and ecologically diverse family Conidae presents fundamental opportunities for marine pharmacology research and drug discovery. The focus of this investigation is to summarize the worldwide distribution ofConus and their species diversity with special reference to the Indian coast. In addition, this study will contribute to understanding the structural properties of conotoxin and therapeutic application ofConus venom peptides. Cone snails can inject a mix of various conotoxins and these venoms are their major weapon for prey capture, and may also have other biological purposes, and some of these conotoxins fatal to humans.Conusvenoms contain a remarkable diversity of pharmacologically active small peptides; their targets are an iron channel and receptors in the neuromuscular system. Interspecific divergence is pronounced in venom peptide genes, which is generally attributed to their species specific biotic interactions. There is a notable interspecific divergence observed in venom peptide genes, which can be justified as of biotic interactions that stipulate species peculiar habitat and ecology of cone snails. There are several conopeptides used in clinical trials and one peptide (Ziconotide) has received FDA approval for treatment of pain. This perspective provides a comprehensive overview of the distribution of cone shells and focus on the molecular approach in documenting their taxonomy and diversity with special reference to geographic distribution of Indian cone snails, structure and properties of conopeptide and their pharmacological targets and future directions.

17.
Asian Pacific Journal of Tropical Medicine ; (12): 337-351, 2015.
Article in Chinese | WPRIM | ID: wpr-951577

ABSTRACT

The evolutionarily unique and ecologically diverse family Conidae presents fundamental opportunities for marine pharmacology research and drug discovery. The focus of this investigation is to summarize the worldwide distribution of Conus and their species diversity with special reference to the Indian coast. In addition, this study will contribute to understanding the structural properties of conotoxin and therapeutic application of Conus venom peptides. Cone snails can inject a mix of various conotoxins and these venoms are their major weapon for prey capture, and may also have other biological purposes, and some of these conotoxins fatal to humans. Conus venoms contain a remarkable diversity of pharmacologically active small peptides; their targets are an iron channel and receptors in the neuromuscular system. Interspecific divergence is pronounced in venom peptide genes, which is generally attributed to their species specific biotic interactions. There is a notable interspecific divergence observed in venom peptide genes, which can be justified as of biotic interactions that stipulate species peculiar habitat and ecology of cone snails. There are several conopeptides used in clinical trials and one peptide (Ziconotide) has received FDA approval for treatment of pain. This perspective provides a comprehensive overview of the distribution of cone shells and focus on the molecular approach in documenting their taxonomy and diversity with special reference to geographic distribution of Indian cone snails, structure and properties of conopeptide and their pharmacological targets and future directions.

18.
Ciênc. rural ; 44(3): 501-509, mar. 2014. ilus
Article in Portuguese | LILACS | ID: lil-704137

ABSTRACT

O bloqueio dos canais para cálcio dependentes de voltagem é uma estratégia importante no tratamento do trauma medular, pois previne o influxo exacerbado do cálcio que participa ativamente em processos neurodegenerativos agudos, resultando em neuroproteção com melhora das funções neurológica. Dentre esses bloqueadores, as toxinas de caramujos marinhos são peptídeos com adequada estabilidade estrutural, estudadas pelas ações específicas em canais iônicos e receptores que interferem diretamente na liberação de neurotransmissores e na neuromodulação dos neurônios motores e sensitivos da medula espinal. Elas já são utilizadas no tratamento de desordens neurológicas e mostram-se promissoras no desenvolvimento de novas terapias para o trauma medular. Portanto, objetivou-se discorrer sobre a fisiopatologia do trauma medular e a possível utilização terapêutica das toxinas de caramujo marinho, atuantes nos principais canais para cálcio dependentes de voltagem.


Blocking voltage dependent calcium channels is an important strategy in acute spinal trauma treatment, because it prevents the exacerbated calcium influx which participates actively in acute neurodegenerative processes, resulting in neuroprotection with improvement of neurological and electrophysiological functions. The cone snail toxins are peptides with adequate structural stability, which have been studied by specific actions on ion channels and receptors that directly interfering in the release of neurotransmitters and neuromodulation of sensory and motor neurons of the spinal cord. They are already used in the treatment of neurological disorders and appear to be promising in the development of new therapies for spinal trauma. Therefore, it was aimed to discuss the pathophysiology of spinal cord trauma, and possible therapeutic use of marine snail toxins that acts in voltage-dependent calcium channels.

19.
Military Medical Sciences ; (12): 598-601, 2014.
Article in Chinese | WPRIM | ID: wpr-473989

ABSTRACT

Objective To clone a new conotoxin Bt14.10 from Conus betulinus derived from the South China Sea, synthesize the peptide , and to determine linkage of its disulfide bridges .Methods The genomic DNA was extracted from C.betulinus venom duct while the Bt14.10 sequence was cloned using primers designed based on the untranslated region and intron.The peptide was then synthesized using solid-phase method and folded into the target product whose disulfide bridge connection was further determined by two-step oxidative folding .Results A novel conotoxin designated as Bt 14.10 (CAHSVPGMHPCKCNNTC-NH2) was obtained,the disulfide connectivity of which was C1-C3,C2-C4.Conclusion Bt14.10 is a new A-superfamily conotoxin and has a distinct loop spacing pattern between cysteines in A-superfamily conotoxins.

20.
The Journal of Clinical Anesthesiology ; (12): 610-613, 2014.
Article in Chinese | WPRIM | ID: wpr-452301

ABSTRACT

Objective To observe the effects of nAChR antagonistα-conotoxin Eb1.6 on ther-mal pain threshold and spinal IL-1βexpression levels and astrocytes activation in rats using L5 spinal nerve transaction (SNT)model.Methods Fifty male Sprague-Dawley rats were randomly assigned into 5 groups with each group 10 rats:sham group,different doses of α-CTX Eb1.6 (0.1 5,1.5 and 1 5 nmol/kg)groups and the saline group after SNT.Saline solution or different doses of Eb1.6 were intraperitoneally injected seven days after the surgery when the model was stable and the treatment continued for seven days.Measured the TWLs of all groups of the rats 1,2,4,7,12 hours after the in-jection on 7 d and 13 d.The rats were sacrificed and L5 spinal cord tissues were collected immediately after the behavioral tests on 13 d.The expression of GFAP and IL-1βwere assessed by Western blot assay and enzyme linked immunosorbent assay (ELISA)separately.Results Groups E1,E2,E3 and C had shorter TWL before the injection on 7 d and 13 d than group N(P <0.05).The TWLs of the rats in groups E1,E2 and E3 of 1 h,2 h and 4 h after the injection on 7 d were significantly higher than that before the injection(P <0.05)with 2 h after the injection showed the most obvious change.The TWL of 1 h,2 h,4 h and 7 h after the injection of the rats in group E1,E2 and E3 and those of 12 h after the injection of the rats in group E2 and E3 on 13 d were significantly higher than that before the injection(P <0.05 )and also higher than TWL of the respective time points on 7 d(P < 0.05 ),also with 2 h after the injection showed the most obvious change.The TWLs of 2 h after the injection a-mong group E1,E2 and E3 showed significant differences both on 7 d and 13 d (P <0.05).Rats spi-nal IL-1βand GFAP expression levels of group E1,E2,E3 and C were significantly higher than those of group N(P <0.05).Rats spinal IL-1β and GFAP expression levels of groups E1,E2,E3 signifi-cantly decreased compared with group C(P <0.05).There were significant differences among the spi-nal IL-1βand GFAP expression levels of group E1,E2 and E3(P <0.05).Conclusion Eb1.6 dose-de-pendently reduced the thermal hyperalgesia induced by L5 spinal nerve transection.Repeated treat-ment of Eb1.6 could produce better analgesic effect,which might be partly attribute to the inhibition of spinal IL-βlevels and astrocytes activation.

SELECTION OF CITATIONS
SEARCH DETAIL